Abstract

Abstract A novel method to calculate the distribution of tensile modulus of injection molded PET/LCP blends across the thickness of the mold cavity has been developed, based on the generalized Halpin–Tsai composite model, but with a variable fiber aspect ratio. Using this method, we are able to make a number of predictions regarding the effects of melt temperature, mold temperature, injection speed, and LCP volume fraction on the moduli of the injection molded blends. Our predictions show that in order to optimize the reinforcement effect of the in-situ formed LCP fibers in the blends, low mold temperature and low injection speed are required. These results are in good agreement with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.