Abstract

This article evaluates the accuracy and applicability of three of the most common solubility models (i.e., Jouyban–Acree, NRTL-SAC, and COSMO-RS) in prediction of androstenedione (AD) solubility in binary mixtures of methanol + water and ethanol + water. The solubilities were measured from (275 to 325) K using medium-throughput experiments and then well represented mathematically by modified Apelblat and CNIBS/Redlich–Kister equations. The computational results show that AD solubility decreases monotonically with increasing water concentration in methanol + water mixtures, but it has a maximum at 0.15–0.30 mole fraction of water in the ethanol aqueous solution. Moreover, the performance of three solubility prediction models in this particular case was compared to identify the advantages and disadvantages of each model. The overall average relative deviation (ARD) for solubility prediction is 4.4% using Jouyban–Acree model, while it is 18.3% with NRTL-SAC model. Surprisingly, COSMO-RS model in combination ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.