Abstract
This paper recounts research that develops, conducts, and analyzes an experimental design characterizing wear rates of various materials sliding at high speeds along an AISI 4340 steel rail. The work supports Holloman Air Force Base’s engineering of a more wear-resistant rocket slipper for their high-speed test track. A design of experiments approach is used to systematically identify and evaluate potential slipper attributes that mitigate wear based on a heat transfer model. Results include recommendations of slipper materials that theoretically perform similar to or better than the baseline Vascomax®C300 maraging steel as well as statistical evaluation of the finite element analysis heat transfer model of the Air Force Research Laboratory’s pin-on-disk rig.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.