Abstract

A hydride generation gas phase molecular absorption spectrometry (HG-GPMAS) method for the determination of butyltin compound is optimized by experimental design. This method is based on the conversion of the butyltin chloride into gaseous monobutyltin hydride by adding a sodium tetrahydroborate (III) solution. The hydride generated is collected in a liquid nitrogen cryogenic trap. This is revolatilized, driven to the quartz flow cell and measured with GPMAS with diode array detection. A Plackett–Burmann design is used for the study of the factors that influence the absorption signal. The optimization of the parameters affecting the production and collection of the monobutyltin hydride is achieved using a central composite design. Partial least square (PLS), multiple linear regression (MLR) and univariate calibration are applied to the spectra obtained. The quality parameters (detection limits and precision) for the butyltin chloride are reported. An interference study is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.