Abstract

BackgroundStreptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis. The World Health Organization estimates that streptococcal pneumonia is the cause of approximately 1.9 million deaths of children under five years of age each year. The large number of serotypes underlying the disease spectrum, which would be reflected in the high production cost of a commercial vaccine effective to protect against all of them and the higher level of amino acid sequence conservation as compared to polysaccharide structure, has prompted us to attempt to use conserved proteins for the development of a simpler vaccine. One of the most prominent proteins is pneumolysin (Ply), present in almost all the serotypes known at the moment, which shows an effective protection against S. pneumoniae infections.ResultsWe have cloned the pneumolysin gene from S. pneumoniae serotype 14 and studied the effects of eight variables related to medium composition and induction conditions on the soluble expression of rPly in Escherichia coli (E. coli) and a 28-4 factorial design was applied. Statistical analysis was carried out to compare the conditions used to evaluate the expression of soluble pneumolysin; rPly activity was evaluated by hemolytic activity assay and served as the main response to evaluate the proper protein expression and folding. The optimized conditions, validated by the use of triplicates, include growth until an absorbance of 0.8 (measured at 600 nm) with 0.1 mM IPTG during 4 h at 25°C in a 5 g/L yeast extract, 5 g/L tryptone, 10 g/L NaCl, 1 g/L glucose medium, with addition of 30 μg/mL kanamycin.ConclusionsThis experimental design methodology allowed the development of an adequate process condition to attain high levels (250 mg/L) of soluble expression of functional rPly in E. coli, which should contribute to reduce operational costs. It was possible to recover the protein in its active form with 75% homogeneity.

Highlights

  • Streptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis

  • This experimental design methodology allowed the development of an adequate process condition to attain high levels (250 mg/L) of soluble expression of functional recombinant Ply (rPly) in E. coli, which should contribute to reduce operational costs

  • Expression of rPly was performed at Absind 0.8 with 0.1 mM IPTG for 4 h induction at 25°C in a medium culture comprised of 5 g/L yeast extract, 5 g/L tryptone, 1 g/L glucose, 30 μg/mL kanamycin and 10 g/L NaCl. *Induction moment

Read more

Summary

Introduction

Streptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis. The World Health Organization estimates that streptococcal pneumonia is the cause of approximately 1.9 million deaths of children under five years of age each year. The large number of serotypes underlying the disease spectrum, which would be reflected in the high production cost of a commercial vaccine effective to protect against all of them and the higher level of amino acid sequence conservation as compared to polysaccharide structure, has prompted us to attempt to use conserved proteins for the development of a simpler vaccine. In spite of the vast number of publications on the bacterium, many questions about its pathogenicity are still unanswered, and this pathogen remains a major causative agent of serious human diseases such as pneumonia, meningitis and bacteraemia [1]. The vast majority of its victims come from the poorest countries in the world [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call