Abstract

As a method of initiating detonation in a short distance with a small amount of energy, the combination of laser ignition and shock focusing in an elliptical cavity was proposed and experimentally demonstrated with a C2H4-O2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbox {C}_{2}\\hbox {H}_{4}{-}\\hbox {O}_{2}$$\\end{document} mixture at 100 kPa and 297 K. In the experiment, an elliptical cavity and single rectangular cavities of different heights were used, and their flow-field patterns were visualized using high-speed schlieren imaging. Detonation initiation was achieved in the case of the elliptical cavity, and based on the Mach number change of the leading shock wave, two propagation phases were verified: the deceleration and acceleration phases. The deceleration phase was driven merely by the gasdynamic effect, wherein the initial shock wave (ISW) expanded spherically, and the acceleration phase began when the ISW shifted to planar propagation. In the acceleration phase, although gradual acceleration was observed in rectangular cavities, rapid acceleration occurred in the elliptical cavity. From the schlieren images, the second acceleration was caused not only by the concave reflected shock wave’s catching up with the ISW, but also by the fast-flames that were generated along the cavity corners and engulfed the ISW in the converging section of the elliptical cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call