Abstract

We experimentally demonstrate topological slow light waveguides in valley photonic crystals (VPhCs). We employed a bearded interface formed between two topologically-distinct VPhCs patterned in an air-bridged silicon slab. The interface supports both topological and non-topological slow light modes below the light line. By means of optical microscopy, we observed light propagation in the topological mode in the slow light regime with a group index ng over 30. Furthermore, we confirmed light transmission via the slow light mode even under the presence of sharp waveguide bends. In comparison between the topological and non-topological modes, we found that the topological mode exhibits much more efficient waveguiding than the trivial one, demonstrating topological protection in the slow light regime. This work paves the way for exploring topological slow-light devices compatible with existing photonics technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.