Abstract

Chirality is an asymmetric property widely found in nature. Here, we propose and demonstrate experimentally the spontaneous emergence of chirality in an on-chip ultrahigh-Q whispering-gallery microresonator, without broken parity or time-reversal symmetry. This counterintuitive effect arises due to the inherent Kerr-nonlinearity-modulated coupling between clockwise and counterclockwise propagating waves. Above an input threshold of a few hundred microwatts, the initial chiral symmetry is broken spontaneously, and the counterpropagating output ratio exceeds 20∶1 with bidirectional inputs. The spontaneous chirality in an on-chip microresonator holds great potential in studies of fundamental physics and applied photonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call