Abstract
We demonstrate single-site addressability in a two-dimensional optical lattice with 600 nm lattice spacing. After loading a Bose-Einstein condensate in the lattice potential, we use a focused electron beam to remove atoms from selected sites. The patterned structure is subsequently imaged by means of scanning electron microscopy. This technique allows one to create arbitrary patterns of mesoscopic atomic ensembles. We find that the patterns are remarkably stable against tunneling diffusion. Such microengineered quantum gases are a versatile resource for applications in quantum simulation, quantum optics, and quantum information processing with neutral atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.