Abstract

Active plasma lensing, a compact method for intensifying the focus of charged particle beams by providing a magnetic field gradient of kT/m, has emerged as a sought-after technology in laser plasma accelerator applications. However, the utilization of active plasma lenses faces significant hurdles when dealing with laser-driven proton pulses, characterized by their broad bandwidth and high divergence. To address this challenge, we developed a novel active plasma lens with a variable radius, specifically designed to optimize lens geometry in accordance with the beam envelope, and performed the first measurement of its focusing ability. The experimental findings reveal that, compared to conventional cylindrical active plasma lenses, our radius-varying lens exhibits a 2.0-fold improvement in single-energy transmission efficiency, while maintaining comparable achromatic ability. This breakthrough is anticipated to significantly contribute to the miniaturization of laser proton accelerators. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call