Abstract

We report an ensemble nuclear magnetic resonance (NMR) implementation of a quantum lattice gas algorithm for the diffusion equation. The algorithm employs an array of quantum information processors sharing classical information, a novel architecture referred to as a type-II quantum computer. This concrete implementa-tion provides a test example from which to probe the strengths and limitations of this new computation paradigm. The NMR experiment consists of encoding a mass density onto an array of 16 two-qubit quantum information processors and then following the computation through 7 time steps of the algorithm. The results show good agreement with the analytic solution for diffusive dynamics. We also describe numerical simulations of the NMR implementation. The simulations aid in determining sources of experimental errors, and they help define the limits of the implementation. PACS: 03.67.Lx; 47.11.+j; 05.60.-k

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.