Abstract
We experimentally performed complete and optimized quantum process tomography of quantum gates implemented on superconducting qubit-based IBM QX2 quantum processor via two constrained convex optimization (CCO) techniques: least squares optimization and compressed sensing optimization. We studied the performance of these methods by comparing the experimental complexity involved and the experimental fidelities obtained. We experimentally characterized several two-qubit quantum gates: identity gate, a controlled-NOT gate, and a SWAP gate. The general quantum circuit is efficient in the sense that the data needed to perform CCO-based process tomography can be directly acquired by measuring only a single qubit. The quantum circuit can be extended to higher dimensions and is also valid for other experimental platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.