Abstract

We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser in the photodiode, the constant envelope OFDM W-band wireless signal is obtained to suppress the nonlinear impairments. Moreover, the phase noises of the beating lasers appear as additive terms to the desired signal, and could be easily filtered out without complex phase noise estimation and compensation algorithms. In our experiment, 4 Gb/s QPSK and 8 Gb/s 16-QAM constant envelope OFDM W-band signals are transmitted over 22.8 km single mode fiber and 2.3 m air distance with achieved bit-error-rate performance below the forward error correction limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.