Abstract

A photonic beamformer system designed for next-generation 5G new radio (5G NR) operating in the millimeter waveband is proposed and demonstrated experimentally, including its performance characterization. The photonic beamforming device is based on optical ring resonators (ORRs) implemented on Si3N4 and assisted with multicore fiber (MCF) to feed different antenna elements (AEs). Fast-switching configuration of the ORRs is performed changing the operating wavelength, as tuning the wavelength modifies the coupling coefficient of the rings and, consequently, the induced time delay. Multibeam operation is evaluated at 17.6- and 26-GHz radio keeping the ORRs’ configuration. The beamforming performance is evaluated using single-carrier signals with up to 128 quadrature amplitude modulation over up to 4.2-GHz electrical bandwidth. The experimental beamforming system with two AEs provides up to 21 Gb/s per user, while the beamforming system with four AEs provides up to 16.8 Gb/s per user. Wireless transmission confirms that changing the wavelength from 1545.200 to 1545.195 nm modifies the beam steering from 11.3° to 23° with 26-GHz signals (5G NR pioneer band in Europe).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.