Abstract

The short-term stability of passive atomic frequency standards, particularly ones operated sequentially, is often limited by local oscillator noise via intermodulation effects. This article describes an experimental demonstration of the intermodulation effect on the frequency stability of a continuous atomic fountain standard usually imperceptible under normal operating conditions. To make the effect observable, we increase the phase instability of the microwave field interrogating the clock transition. We measure the frequency stability of the locked, commercial local oscillator, for both square-wave phase modulation and square-wave frequency modulation of the microwave field. The observed degradation of the stability depends on the modulation frequency in a way that agrees with our earlier theoretical predictions. Most significantly, no degradation is observed when the modulation frequency is made equal to the Ramsey linewidth. When no extra phase noise is added, the frequency instability, currently 2.0 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-13</sup> at 1 s, is limited only by atomic shot-noise. This shows the potential to reduce it via the use of a higher atomic flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.