Abstract
A high-rate continuous-variable quantum key distribution (CV-QKD) system based on high-order discrete modulation is experimentally investigated. With the help of the novel system scheme, effective digital signal processing (DSP) algorithms and advanced analytical security proof methods, the transmission results of 5.059 km, 10.314 km, 24.490 km, and 50.592 km are achieved for 1 GBaud optimized quantum signals. Correspondingly, the asymptotic secret key rates (SKRs) are 292.185 Mbps, 156.246 Mbps, 50.491 Mbps, and 7.495 Mbps for discrete Gaussian (DG) 64QAM, and 328.297 Mbps, 176.089 Mbps, 51.304 Mbps, and 9.193 Mbps for DG 256QAM, respectively. Under the same parameters, the achieved SKRs of DG 256QAM is almost same as ideal Gaussian modulation. In this case, the demonstrated high-rate discrete-modulated CV-QKD system has the application potential for high-speed security communication under tens of kilometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.