Abstract

AbstractA new approach to high‐concentration photovoltaics (HCPV) based on a parabolic trough primary concentrator is presented. The design diverges from the standard HCPV arrangement of a two‐axis tracking point‐focus concentrator, and rather employs a simpler parabolic trough primary concentrator to reduce cost. To break the 2D limit of concentration, and bring the system into the realm of HCPV, the system employs an array of rotating secondary concentrators is arranged along the focal line of the parabolic trough. The resulting line‐to‐point (LTP) focus geometry allows the system to achieve a geometric concentration of 590×, yet still maintains the advantages of having a linear trough primary concentrator, namely manufacturability, economy, and scalability. A full‐scale prototype of the system was constructed in Biasca, Switzerland. During on‐sun tests a flux concentration of 364 suns was measured at the exit of the secondary concentrator, the highest reported concentration for any parabolic‐trough‐based system. Moreover, the system reached a peak efficiency of 20.2%, the highest measured solar‐to‐DC efficiency for a parabolic trough‐based solar collector. Long‐term performance is estimated by means of a coupled optical‐electrical model validated vis‐à‐vis the experimental results. This work serves as an experimental proof‐of‐concept for high‐concentration trough‐based collectors, thereby opening new avenues for reducing the cost of HCPV systems. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.