Abstract

Disaggregation and white-box approaches are useful in expediting disaster recovery of optical transport networks. When an optical network system is damaged by a large disaster, the damaged devices can be replaced by the disaggregated functional devices, while disregarding vendor boundaries. In the light of the disaggregation and white-box approaches, we are developing a prototype of disaggregated portable emergency optical system (EOS) for early and low-cost postdisaster recovery. The EOS is customizable, and different functions can be selected to meet the different requirements in disaster recovery. In addition to replacing the damaged functions of the original optical system with an EOS, we introduce two new disaggregated functions into the EOS for postdisaster recovery. First, we introduce an optical supervisory channel handshake scheme to aid the interconnection of the surviving optical resources. Second, we introduce a scheme to achieve the quick recovery of the damaged control plane with the surviving or first restored wireless access capability. This is highly desired not only for emergency network control, but also for the quick collection of the network damage information. These two new functions have been implemented into the EOS prototype. We experimentally demonstrated the network recovery of the data-plane and the control-plane with the EOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.