Abstract
Quantum effects, besides offering substantial superiority in many tasks over classical methods, are also expected to provide interesting ways to establish secret keys between remote parties. A striking scheme called "counterfactual quantum cryptography" proposed by Noh [Phys. Rev. Lett. 103, 230501 (2009).] allows one to maintain secure key distributions, in which particles carrying secret information are seemingly not being transmitted through quantum channels. We have experimentally demonstrated, for the first time, a faithful implementation for such a scheme with an on-table realization operating at telecom wavelengths. To verify its feasibility for extension over a long distance, we have furthermore reported an illustration on a 1km fiber. In both cases, high visibilities of more than 98% are achieved through active stabilization of interferometers. Our demonstration is crucial as a direct verification of such a remarkable application, and this procedure can become a key communication module for revealing fundamental physics through counterfactuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.