Abstract

We demonstrate an on-fiber all-optical switching device based on a transient grating formed by the interference of control laser pulses in a Kerr-type nonlinear material placed in the evanescent region of the fiber. The device can operate in two distinctive modes. First, switching/coupling among the fiber modes using bulk index modulation was investigated and an efficiency of about %0.55 @852 nm was measured. Second, by exploiting Four Wave Mixing (FWM), an all-optical switching that transfers power among light signals with wavelengths of λ 1 = 440 nm and λ 2 = 663 nm was achieved by quasi-phase-matching and fRequency matching in a nonlinear thin polymeric film. The results prove that the introduced switching structure may have the potential to be used in integrated photonic applications such as intensity modulators or controllable couplers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call