Abstract

This article reports on the design and the experimental realization of packet-switched optical network (PSON) for a data center network. In PSON, an optical interconnect consists of a combination of a fast tunable laser (FTL), an arrayed waveguide grating router, and a burst mode receiver (BMR). The conventional FTL transmitters can only accommodate short fixed-size photonic frame (PF) of tens of microseconds rather than variable-size PF due to the short-term wavelength stability. By using the FTL with a thermal compensation method, the PSON can support variable-size PFs with extended size to minimize the switching overhead in the optical switch domain. Our PSON system can achieve up to 96% throughput of 10 GbE service as the end-to-end optical switching time is reduced to 1.94 $\mu$ s that requires only 3 $\mu$ s guard-time in a 45 $\mu$ s time-slot. Total switching time includes wavelength conversion time of FTL, response time of BMR and burst mode-clock and data recovery (BM-CDR). Our PSON will achieve near non-blocking scheduling by use of a centralized scheduler running a grant-aware (GA) scheduling algorithm, which can be further improved to be non-blocking scheduling with a novel algorithm called C-RRP. The C-RRP scheduling algorithm is designed especially for the non-uniform distribution. Simulation results show that C-RRP improves the throughput and latency performance in hot-spot conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.