Abstract

We propose and experimentally demonstrate a simple and energy-efficient photonic convolutional accelerator based on a monolithically integrated multi-wavelength distributed feedback semiconductor laser using the superimposed sampled Bragg grating structure. The photonic convolutional accelerator operates at 44.48 GOPS for one 2 × 2 kernel with a convolutional window vertical sliding stride of 2 and generates 100 images of real-time recognition. Furthermore, a real-time recognition task on the MNIST database of handwritten digits with a prediction accuracy of 84% is achieved. This work provides a compact and low-cost way to realize photonic convolutional neural networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call