Abstract

Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum information processing. However, photons, one of the best candidates for qubits, suffer from a lack of strong nonlinear coupling, which is required for quantum logic operations. Here we show how this drawback can be overcome by reporting a proof-of-principle experimental demonstration of a nondestructive controlled-NOT (CNOT) gate for two independent photons using only linear optical elements in conjunction with single-photon sources and conditional dynamics. Moreover, we exploit the CNOT gate to discriminate all four Bell states in a teleportation experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.