Abstract

Accurate modeling of thermal noise in MOSFETs is crucial for RF application of deep-submicrometer CMOS technologies. Here, we present RF noise measurements on four commercial advanced CMOS technologies down to the 45-nm node. Based on this extensive set of measurements, we prove the existence of excess noise (i.e., above the pure Nyquist level), but at the same time, we show that it is significant only for sub-100-nm MOSFETs. The amount of excess noise depends mainly on the channel length, and its occurrence is remarkably universal across technologies. We also present an electric-field-dependent extension of Nyquist's law that represents a nonequilibrium-transport correction to diffusive transport. We show that this microscopic model quantitatively explains the main features of the experimentally observed excess noise for all technologies. This includes its bias dependence, its geometrical scaling behavior, and the observed difference between n-channel and p-channel devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call