Abstract

Systemic inflammatory response (SIR) comprises both direct effects of inflammatory mediators (IM) and indirect effects, such as secondary circulatory failure which results in tissue hypoxia (HOX). These two key components, SIR and HOX, cause multiple organ failure (MOF). Since HOX and IM occur and interact simultaneously in vivo, it is difficult to clarify their individual pathological impact. To eliminate this interaction, precision cut liver slices (PCLS) were used in this study aiming to dissect the effects of HOX and IM on mitochondrial function, integrity of cellular membrane, and the expression of genes associated with inflammation. HOX was induced by incubating PCLS or rat liver mitochondria at pO2 < 1% followed by reoxygenation (HOX/ROX model). Inflammatory injury was stimulated by incubating PCLS with IM (IM model). We found upregulation of inducible nitric oxide synthase (iNOS) expression only in the IM model, while heme oxygenase 1 (HO-1) expression was upregulated only in the HOX/ROX model. Elevated expression of interleukin 6 (IL-6) was found in both models reflecting converging pathways regulating the expression of this gene. Both models caused damage to hepatocytes resulting in the release of alanine aminotransferase (ALT). The leakage of aspartate aminotransferase (AST) was observed only during the hypoxic phase in the HOX/ROX model. The ROX phase of HOX, but not IM, drastically impaired mitochondrial electron supply via complex I and II. Additional experiments performed with isolated mitochondria showed that free iron, released during HOX, is likely a key prerequisite of mitochondrial dysfunction induced during the ROX phase. Our data suggests that mitochondrial dysfunction, previously observed in in vivo SIR-models, is the result of secondary circulatory failure inducing HOX rather than the result of a direct interaction of IM with liver cells.

Highlights

  • Trauma, sepsis, and several types of shock are accompanied by two key pathological events

  • Exposure of liver specimens to warm ischemia for 1 h resulted in an increase of free iron levels of 20 nmol/g tissue compared to controls, which is in accordance with previous publications (Sergent et al, 2005)

  • This concentration was used in this study with isolated mitochondria in order to test whether or not this particular concentration of iron can induce the changes we have observed in experiments with precision cut liver slices (PCLS)

Read more

Summary

Introduction

Sepsis, and several types of shock are accompanied by two key pathological events. These are drastic elevation of levels of inflammatory mediators (IM), predominantly cytokines (Clarkson et al, 2005), and secondary circulatory failure causing tissue hypoxia (HOX) (Legrand et al, 2010). While TNF-α is the most potent activator of death pathways, IL-6 is one of the key regulators of the inflammatory response in the liver. It activates acute phase response, increasing the synthesis of C-reactive protein, fibrinogen, and serum amyloid A, among others. Upregulation of iNOS has been demonstrated in hepatic ischemia reperfusion models www.frontiersin.org

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call