Abstract

This paper presents an experimental investigation supported by data-driven approaches concerning the influence of critical stochastic effects on the dynamic fracture toughness of glass-filled epoxy composites using a computationally efficient framework of uncertainty quantification. Three different shapes of glass particles are considered including rod, spherical and flaky shapes with coupled stochastic variations in aspect ratio, dynamic elastic modulus and volume fraction. An artificial neural network based surrogate assisted Monte Carlo simulation is carried out here in conjunction with advanced experimental techniques like digital image correlation and scanning electron microscopy to quantify the uncertainty and sensitivity associated with the dynamic fracture toughness of composites in terms of stress intensity factor under dynamic impact. The study reveals that the pre-crack initiation time regime shows the most prominent effect of uncertainty. Additionally, rod shape and the aspect ratio are the most sensitive filler type and input parameter respectively for characterizing dynamic fracture toughness. Here the quantitative results based on large-scale data-driven approaches convincingly demonstrate using a computational mapping between the stochastic input and output parameter spaces that the effect of uncertainty gets pronounced significantly while propagating from the compound source level to the impact responses. Such outcomes based on experimental data essentially bring us to the realization that quantification of uncertainty is of utmost importance for developing a reliable and practically relevant inclusive analysis and design framework for the dynamic fracture of particulate composites. With limited literature available on the determination of fracture toughness considering inertial effects, the present work demonstrates a novel and insightful experimental approach for uncertainty quantification and sensitivity analysis of dynamic fracture toughness of particulate polymer composites based on surrogate modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call