Abstract

Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.