Abstract

Realistic quantum mechanical systems are always exposed to an external environment. The presence of the environment often gives rise to a Markovian process in which the system loses information to its surroundings. However, many quantum systems exhibit a pronounced non-Markovian behavior in which there is a flow of information from the environment back to the system, signifying the presence of quantum memory effects [1-5]. The environment is usually composed of a large number of degrees of freedom which are difficult to control, but some sophisticated schemes for modifying the environment have been developed [6]. The physical realization and control of dynamical processes in open quantum systems plays a decisive role, for example, in recent proposals for the generation of entangled states [7-9], for schemes of dissipative quantum computation [10], for the design of quantum memories [11] and for the enhancement of the efficiency in quantum metrology [12]. Here we report an experiment which allows through selective preparation of the initial environmental states to drive the open system from the Markovian to the non-Markovian regime, to control the information flow between the system and the environment, and to determine the degree of non-Markovianity by direct measurements on the open system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call