Abstract
An analytical model describing the vibrational density of states (VDOS) of liquids has long been elusive, owing to the complexities of liquid dynamics. Nevertheless, Zaccone and Baggioli have recently developed such a model which was proposed to be the universal law for the vibrational density of states of liquids. Distinct from the Debye law, g(ω) ∝ ω2, for solids, the universal law for liquids reveals a linear relationship, g(ω) ∝ ω, in the low-energy region. We have confirmed this universal law with experimental VDOS measured by inelastic neutron scattering on real liquid systems including water, liquid metal, and polymer liquids, and have applied this model to extract the effective relaxation rate for the short time dynamics for each liquid. The model has also been further evaluated in the prediction of the specific heat with comparison to existing experimental data as well as with values obtained by different approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.