Abstract

Recent work has reported that hydrogen peroxide is formed at the air-water interface. Given the reduced solvation environment there, this process could give rise to enhanced production of OH from H2O2 photolysis at the interface. These considerations give some importance to understanding the adsorption thermochemistry of hydrogen peroxide. Although there are two molecular dynamics studies that provide the adsorption free energy, to date there is no experimental verification that H2O2 adsorbs at the air-water interface. Here we use glancing-angle Raman spectroscopy to follow the surface adsorption behavior of this molecule. Using standard states of 1 mol L-1 for each of the bulk and surface phases yields a ΔG° of -5 kJ mol-1 at 293 K, comparable to that obtained for DMSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.