Abstract

The research presented in the paper concerns the elastic properties of struvite. The article combines theoretical and experimental research. Experimental studies were carried out on struvite single crystals grown in sodium metasilicate gel by single diffusion. This unique method leads to obtaining crystals of sufficiently large size to conduct, for the first time, experimental measurement of elastic properties of monocrystalline struvite. Using the nanoindentation method, the Ez = 29.1 ± 0.7GPa value of the component of Young's modulus was determined for a struvite single crystal. In addition, the elastic constants C11, C22, and C33 were determined using micro-Brillouin spectroscopy. Theoretical calculations of the abovementioned properties have been carried out by employing density functional theory methods. Scaling of the theoretical elastic constants leads to obtaining good agreement with the experimental values. Values of the Ex and Ey components of the Young's modulus, not available from the experimental nanoindentation technique, have been determined theoretically as 23GPa and 27GPa, respectively. Differences in the values of elastic components and Young's modulus components are related to the layered crystal structure of struvite and directional character of the hydrogen-bonding pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call