Abstract

We perform electrical transport measurements in the mixed state of ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2}{\mathrm{CaCu}}_{2}{\mathrm{O}}_{8}$ single crystals by using a Corbino disk geometry. In this configuration, vortices are forced to move in closed circular trajectories, without crossing the sample's edge. By comparison with conventional four-probe transport experiments we can contrast the role that bulk pinning and surface barriers have on vortex motion in the vortex liquid state of this material. Our Corbino and conventional experiments give the same temperature and field dependence for the electrical resistivity in the vortex liquid state, activation energies for vortex motion and irreversibility lines. Thus, we conclude that in these crystals, flux motion in the vortex liquid state is governed by bulk effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.