Abstract

From a fire safety point of view, the burning behavior of lithium-ion batteries is of high interest. The heat release rate (HRR) is the most important fire parameter to analyze the fire hazards of burning objects, so that an accurate determination of it is crucial. In this paper, two different measurement techniques, the Oxygen Consumption Calorimetry (OCC) and the Sensible Enthalpy Rise Approach (SERA) are simultaneously performed in the same calorimeter to measure the HRR of two different types of lithium-ion batteries. HRR values as well as total energies determined by SERA are higher than measured with OCC: The total energy released is about 10–12 times (SERA) and 6–9.5 times (OCC) the electrical stored energy for both battery types, whereas the timescales of the release differ strongly between the types, resulting in maximum HRRs of 3.4 MW (SERA) and 1.5 MW (OCC) for one module of type A and 0.8 MW (SERA) and 0.6 (OCC) of type B respectively. Furthermore, a sensitive dependency of the HRR measurement with SERA on the position of the wall temperature measurement is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.