Abstract

The relative importance of the base bulk recombination current and the base-emitter junction space charge recombination current is examined for AlGaAs/GaAs HBTs with different grading schemes in the base-emitter junction. Experimental results demonstrate that, in abrupt HBTs, the base bulk recombination current is larger, and the base current increases with the base-emitter bias with an ideality factor of ∼1. In contrast, in graded HBTs, the space charge recombination current dominates and the base current ideality factor is ∼2. These experimental results agree well with a published theoretical calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.