Abstract

The performance of an axial turbine is studied under close-coupled, out-of-phase, multiple-admission pulsed air flow to approximate turbine behavior under pulsed detonation inflow. The operating range has been mapped for four frequencies and compared using multiple averaging approaches and five formulations of efficiency. Steady performance data for full and partial admission are presented as a basis for comparison to the pulsed flow cases. While time-averaged methods are found to be unsuitable, mass-averaged, work-averaged, and integrated instantaneous methods yield physically meaningful values and comparable trends for all frequencies. Peak work-averaged efficiency for pulsed flow cases is within 5% of the peak steady, full admission values for all frequencies, in contrast to the roughly 15–20% performance deficit experienced under steady, 50% partial admission conditions. Turbine efficiency is found to be a strong function of corrected flow rate and mass-averaged rotor incidence angle, but only weakly dependent on frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call