Abstract

In the present study, by adding graphene to a photoconductive photodetector with a niobium pentoxide (Nb2O5) absorber layer and exploiting the photogating effect, the responsivity of the photodetector is significantly improved. In this photodetector, the Nb2O5 layer detects the light, and the graphene improves the responsivity based on the photogating effect. The photocurrent and the percentage ratio of the photocurrent to dark current of the Nb2O5 photogating photodetector are compared with those of the corresponding photoconductive photodetector. Also, the Nb2O5 photoconductive and photogating photodetectors are compared with titanium dioxide (TiO2) photoconductive and photogating photodetectors in terms of responsivity at different applied (drain-source) voltages and gate voltages. The results show that the Nb2O5 photodetectors have better figures of merit (FOMs) in comparison with the TiO2 ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.