Abstract

A model of closed head injury in rats was developed using a calibrated weight-drop device. The development of edema was studied in various brain regions (cerebral hemispheres, brain stem, cerebellum) using a linear specific gravity gradient column. Regional brain tissue density was measured within 1 min, at 15 and 60 min, 18 h, 4 and 10 days after injury to the left cerebral hemisphere, and was compared with values in sham-operated and control rats. Significant edema (i.e., reduced specific gravity) occurred only in the traumatized hemisphere and was maximal at 18 h. A neurologic severity score (NSS) was developed to evaluate the status of the rat after injury. Specific gravity was significantly correlated with NSS at 18 h after injury. The affected hemisphere displayed hemorrhagic lesions as early as one hour post head trauma (HT), which evolved into hemorrhagic necrosis at 18 h. A pathologic score, evaluated 18 h post HT based on size and severity of the lesion, was correlated with the NSS and evaluated for each rat at one hour and 18 h postimpact. This correlation was found to be highly significant. This model of brain injury may be useful in future studies on the effects of therapeutic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call