Abstract

Reverse saturation current and the ideality factor (η) are the main parameters that affect the performance of a radiation semiconductor detector in different space environmental conditions. We have measured both of these parameters for the Silicon Drift Detector (SDD) used as a radiation detector in the X-ray spectrometry for space borne applications having the active area of 40mm2 and 109mm2 with 450μm thick silicon. The measured reverse saturation current is compared with the theoretically estimated values using diode equation for various detector operating temperatures and shown that there is a strong dependence of reverse saturation current with ideality factor. Subsequently, using the reverse saturation current ratio method, the slope ratio for small area to the large area SDD is derived and compared with the theoretical slope ratio obtained using the measured ideality factor. It is shown that the slope ratios closely match with the diode equation of the form which has the ideality factor in both the product and exponential terms for these SDDs. The measured spectral energy resolution is ∼150eV at 5.9keV for both small and large area SDDs when operated at −40°C and −65°C respectively. The noise performance of the spectrometer is also measured in terms of Equivalent Noise Charge (ENC) for various detector operating temperatures and shown that the value of ENC in rms noise electrons is minimal for the pulse shaping time of 3.3μs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call