Abstract

Abstract This paper reports an experimental study conducted on turbulent jet propane flames aiming at further understanding of turbulent structure in non-premixed slow-chemistry combustion systems. Measurements of mean and fluctuating velocity and temperature fields, mean concentration of major chemical species, correlation between velocity and temperature fluctuations, and dissipation of temperature fluctuations are reported in a turbulent round jet non-premixed propane flame, Re =20 400 and 37 600, issuing vertically in still air. The experimental conditions were designed to provide a complete definition of the upstream boundary conditions in the measurement domain for the purpose of validating computational models. The measured data depicts useful flow field information for describing turbulent non-premixed slow-chemistry flames. Velocity–temperature correlation measurements show turbulent heat fluxes tended to be restricted to the mixing layer where large temperature gradients occurred. Observations of non-gradient diffusion of heat at x / D =10 were verified. Temperature fluctuation dissipation, χ , showed the highest values in the shear layer, where the variance of temperature fluctuations was maximum and combustion occurred. The isotropy between the temperature dissipation in the radial and tangential directions was confirmed. By contrast, the observed anisotropy between axial and radial directions of dissipation suggests the influence of large structures in the entrainment shear layer on the production of temperature fluctuations in the flame region. The value of the normalized scalar dissipation at the stoichiometric mixture fraction surface, χ st , was calculated, and ranges between 2 and 4 s −1 . The measured data were used to estimate the budgets in the balance equations for turbulent kinetic energy, Reynolds shear stresses, turbulent heat flux and temperature variance, quantifying the mechanisms involved in the generation of turbulence as well as in the transport of the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.