Abstract

The increasing requirement for the mobile data traffic accelerates the research of millimeter-wave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27–29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.