Abstract

The wear rate of a grinding wheel directly affects the workpiece surface integrity and tolerances. This paper summarizes a combined experimental-modeling framework for life cycle prediction of an electroplated Cubic Boron Nitride (CBN) grinding wheel, typically utilized in nickel-based superalloy grinding. The paper presents an experimental framework to facilitate the formulation of a micro-mechanics based modeling framework. The presented work investigates the topological evolution of the grinding wheel surface and mechanisms of grit failure via depth profiling, digital microscopy and scanning electron microscopy. The results are used to elucidate the statistical evolution of the grinding wheel surface. Different modes of grit failure, including grit attritious wear, fracture and pull out haven been identified. The analysis of the surface topological features indicates a unique grit activation process, leading to a non-uniform spatial distribution of the grit wear. Additionally, single grit pull out experiment has been conducted to assess the residual strength of the grit-wheel interface and the associated state of damage percolation. The experimental results can be utilized in developing a life expectancy model for the CBN grinding wheel to assess the grit mean time to failure as well as grit surface topological evolution as a function of the process parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call