Abstract

A series of fracture mechanics tests were conducted at temperatures of 650°C and 704°C in air, using Inconel® 718. A noncontacting measurement technique, based on computer vision and digital image correlation, was applied to directly measure surface displacements and strains prior to and during creep crack growth. For the first time, quantitative comparisons at elevated temperatures are presented between experimentally measured near-crack-tip deformation fields and theoretical linear elastic and viscoelastic fracture mechanics solutions. The results establish that linear elastic conditions dominate the near-crack-tip displacements and strains at 650°C during crack growth, and confirm that KI is a viable continuum-based fracture parameter for creep growth characterization. Postmortem fractographic analyses indicate that grain boundary embrittlement leads to crack extension before a significant amount of creep occurs at this temperature. At higher temperatures, however, no crack growth was observed due to crack tip blunting and concurrent stress reduction after load application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.