Abstract

Axially push-pull cyclic tests of a low strength rotor steel were performed up to the very high cycle fatigue regime at ambient environment under ultrasonic frequency. Fatigue tests were interrupted at selected number of cycles for surface morphology observation and roughness measurement with the help of a 3D surface measurement system (Alicona InfiniteFocusSL). The fatigue extrusions and slip band developed on the specimen surface were recorded. The influence of stress level on the number and morphology of slip band was discussed. The surface roughness of fatigue specimens was found to be increased with the increasing of fatigue cycles. The fatigued specimens were finally cracked from surface or interior micro-defects after observation of fracture surface by scanning electron microscopy. The internal damage behavior consists of crack initiation and early propagation from micro-defect, crack growth within the fish eye, and fast crack growth. It is observed that there exists a competition between surface and internal fatigue damage in the very high cycle fatigue regime, i.e., surface damage is gradually developed with the increasing of fatigue cycles, while the critical interior micro-defect can be dominant for fatigue cracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call