Abstract

The application of time-delay-estimation techniques to two-dimensional measurements of density fluctuations, obtained with beam emission spectroscopy in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas, has provided temporally and spatially resolved measurements of the turbulence flow-field. Features that are characteristic of self-generated zonal flows are observed in the radial region 0.85⩽r/a⩽1.0. These features include a coherent oscillation (approximately 15 kHz) in the poloidal flow of density fluctuations that has a long poloidal wavelength, possibly m=0, narrow radial extent (krρI<0.2), and whose frequency varies monotonically with the local temperature. The approximate effective shearing rate, dvθ/dr, of the flow is of the same order of magnitude as the measured nonlinear decorrelation rate of the turbulence, and the density fluctuation amplitude is modulated at the frequency of the observed flow oscillation. Some phase coherence is observed between the higher wavenumber density fluctuations and low frequency poloidal flow fluctuations, suggesting a Reynolds stress contribution. These characteristics are consistent with predicted features of zonal flows, specifically identified as geodesic acoustic modes, observed in 3-D Braginskii simulations of core/edge turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call