Abstract

While optical OFDM has been demonstrated for superior transmission performance, its analogue waveform in the time domain challenges many conventional all-optical wavelength converters (AOWC) that are needed for future flexible optical networks. There only exist a few reports on AOWC of OFDM signals, which are mainly based on the low-efficient four-wave mixing. In this paper, we propose an AOWC for OFDM signals by using two-mode injection-locking in a low-cost Fabry-Pérot laser. The control signal and the probe signal at a milliwatt power level are combined and injected into the FP laser. By a proper control, they can be injection-locked to two longitudinal modes in the FP laser and subsequently, the transmission of the probe signal is conditioned by the control signal. We conduct an experimental study on various aspects of this AOWC. Despite a vendor-specified electrical-to-optical (E/O) modulation bandwidth of 2.5 GHz, we find that the optical-to-optical (O/O) modulation bandwidth of AOWC is free from this limit and can be much wider. We examine the linear transfer curve of the AOWC by simply using the OFDM waveforms as the stimulus. The performance tolerance to the wavelength detuning and injected power ratio is also measured. The proposed AOWC can provide a linear transfer function from the control signal to the probe signal to support the random-fluctuated OFDM waveform. We also investigate the maximum capacity of the AOWC by using the adaptive bit-loading OFDM. Finally, we measure the power penalty after the AOWC at two different bit rates to show the tradeoff between the penalty and capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.