Abstract
AbstractZn–air fuel cells are promising energy storage devices for renewable energy and power sources, as they are cost‐effective and have high energy density. However, limited charge and discharge cycles and low round‐trip efficiency have long been obstacles to large‐scale market deployment. Herein, a new fluidized‐bed zinc–air fuel cell is designed, constructed, tested, and characterized. The integration of the fluidized bed in the zinc–air fuel cell leads to key advantages such as: erosion of the anode passivation layer, which plays a key role in the rapid voltage decay and keeping the products of reactions away from the proximity of the electrodes, reducing the concentration overpotential, due to the concentration gradient of electrode species in the diffusion boundary layer between the electrode–electrolyte interface and the electrolyte bulk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.