Abstract

Mixing in static mixers is studied using a set of competitive-parallel chemical reactions and computational fluid dynamics (CFD) in a wide range of operating conditions. Two kinds of mixers, a wide angle Y-mixer and a two jet vortex mixer, referred to as Roughton mixer, are compared in terms of reaction yields and mixing times. It is found that the Roughton mixer achieves a better mixing performance compared to the Y-mixer. The effect of flow rate ratio on mixing in the Roughton mixer has been studied as well and it is shown that the mixing efficiency is not affected by the flow rate ratio. Moreover, experimental results and model predictions are in good agreement for all mixer geometries and operating conditions. CFD is used to calculate absolute mixing times based on the residence time in the segregated zone and it is shown that mixing times of less than 1 ms can be achieved in the Roughton mixer. In addition, CFD provides insight in local concentrations and reaction rates and serves as a valuable tool to improve or to scale-up mixers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.