Abstract

In this paper, we evaluate the performance of 802.11p-based vehicular communications in the presence of radio frequency (RF) jamming attacks. Specifically, we characterize the transmission success rate of a car-to-car link subject to constant, periodic, and reactive RF jamming. First, we conduct extensive measurements in an anechoic chamber, where we study the benefits of built-in techniques for interference mitigation. In addition, we identify that the periodic transmission of preamble-like jamming signals can hinder successful communication despite being up to five orders of magnitude weaker than the signal of interest. We further provide the rationale behind this remarkably high jamming effectiveness. Additionally, we quantify the impact of reaction delay and interference signal length on the effectiveness of the reactive jammer. Then, by means of outdoor measurements, we evaluate the suitability of using the indoor measurements as a model to characterize the performance of car-to-car communications in the presence of RF jamming. Finally, we conduct outdoor measurements emulating a vehicular platoon and study the threats that RF jamming poses to this vehicular ad hoc network (VANET) application. We observe that constant, periodic, but also reactive jamming can hinder communication over large propagation areas, which would threaten road safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.