Abstract

Numerous experimental investigations reported in the open literature over the past decade have clearly demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration, excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the observed high-performance of polyurea is closely related to its highly complex submicron scale phase-segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics computational analyses and the corresponding design-optimization methods has become ever apparent. A critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically based, high-fidelity material model for polyurea. There are presently several public domain and highly diverse material models for polyurea. In the present work, an attempt is made to critically assess these models as well as the experimental methods and results used in the process of their formulation. Since these models are developed for use in the high-rate loading regime, they are employed in the present work, to generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their experimental counterparts in order to assess the fidelity of these models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.