Abstract

Despite the potential of micro Gas Turbines (mGTs) for Combined Heat and Power (CHP), this technology still poses limitations that curb its widespread adoption, especially for applications with a variable heat demand. In fact, whenever the user heat demand is low, mGTs are generally shut down. Otherwise, the high temperature exhaust gases have to be blown off and the resulting electrical efficiency is not high enough to sustain a profitable operation. If, instead of released, the heat in the exhaust gases is re-inserted in the cycle — by injecting hot water and transforming the mGT into a micro Humid Air Turbine (mHAT) — the electrical efficiency can be increased during periods of reduced heat demand, thus improving the economics of the technology. Although the enhanced performance of the mHAT cycle has been thoroughly investigated from a numerical point of view, results regarding the experimental behaviour of this technology remain scarce. In this paper, we present the experimental characterisation of the mHAT located at the Vrije Universiteit Brussel (VUB): based on the T100 mGT and equipped with a spray saturation tower. These are the first experimental results of such an engine working at nominal load with water injection. In addition, the control system of the unit has been modified so that it can operate either at constant electrical power output (the default setting) or at constant rotational speed. The latter option allowed to better assess the effect of water injection. Eperimental results demonstrate the patent benefits of water injection on mGT performance: at fixed rotational speed, the power output of the mHAT increases by more than 30%while the fuel consumption rises only by 11%. Overall, the electrical efficiency in wet operation increases by up to 4.2% absolute points. Future work will involve further optimising the current facility to reduce pressure losses in the air and water circuits. In addition, we will carry out transient simulations and experiments in order to further characterise the facility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.